
68

Current-induced runaway vibrations in dehydrogenated
graphene nanoribbons
Rasmus Bjerregaard Christensen1, Jing-Tao Lü2, Per Hedegård3 and Mads Brandbyge*1

Letter Open Access

Address:
1Center for Nanostructured Graphene (CNG), Department of Micro-
and Nanotechnology, Technical University of Denmark, Ørsteds
Plads, Bldg. 345E, DK-2800 Kongens Lyngby, Denmark, 2School of
Physics, Huazhong University of Science and Technology, 430074
Wuhan, P. R. China and 3Niels-Bohr Institute and Nano-Science
Center, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen Ø, Denmark

Email:
Mads Brandbyge* - mads.brandbyge@nanotech.dtu.dk

* Corresponding author

Keywords:
current-induced forces; density functional theory (NEGF-DFT);
graphene; molecular electronics

Beilstein J. Nanotechnol. 2016, 7, 68–74.
doi:10.3762/bjnano.7.8

Received: 02 October 2015
Accepted: 15 December 2015
Published: 20 January 2016

This article is part of the Thematic Series "Molecular machines and
devices".

Guest Editor: J. M. van Ruitenbeek

© 2016 Christensen et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair

graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as

effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a

coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the

atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibra-

tional instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible

testbed for probing the current-induced forces.
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Introduction
The electronic and transport properties of graphene has been the

focus of intense study since its discovery in 2004 [1]. Due to the

strong σ-bonding between carbon atoms, graphene has a very

high thermal conductivity, and can potentially sustain much

higher current intensities than other materials. Graphene

nanoribbons (GNR) exhibit a bandgap opening due to quantum

confinement in the transverse ribbon direction. This opens the

possibilities of realizing various electronic devices, especially

field-effect transistors, using graphene nanoribbons. Atomi-

cally precise ribbons [2], as well as more advanced ribbon-
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based structures [3,4], have been fabricated “bottom-up” on

metal surfaces. The conductance through the ribbons has been

investigated using STM [5], and the signals of electron vibra-

tions in the current have been addressed by theory [6].

When cutting graphene into one-dimensional ribbons, dangling

bonds emerge at the boundary carbon atoms. If there is an elec-

trical current passing through the ribbon, we expect that these

boundary atoms with dangling bonds are mechanically weak

compared to the central atoms. Actually, it has been observed

experimentally that these atoms can be removed by the passing

electrical current due to current-induced local heating [7,8]. One

theoretical study suggests that the carbon dimers at the armchair

edge vibrate locally and interact strongly with the electrical

current [8]. They can be thought as atomic scale defects at the

boundary. How the current-induced forces affect the dynamics

of these dimers is an interesting question to ask since it could

be addressed by experiments. Employing a semi-classical

Langevin approach, we have previously studied the current-

induced atomic dynamics of a graphene nano-constriction [9].

However, the number of atoms involved even in such a small

system makes a simple analysis difficult.

On the other hand, since the first prediction that current-induced

forces are nonconservative with respect to energy [10], there

has been a substantial theoretical effort aimed at exploring its

consequences for the stability of current-carrying nano-systems

[11-15], or the possibility of driving atomic motors [10,16].

Moreover, it has been shown that, in addition to the noncon-

servative force, the current-induced forces also include an

effective Lorentz force or pseudo-magnetic force, originated

from the Berry phase of electrons [11]. Performing similar

analysis using a scattering theory approach shows that the

predictions apply equally well to much larger mesoscopic

coherent conductors [16,17]. A requirement of impact of the

nonconservative force is that two or more vibrational modes

close in frequency couple to each other via the current carrying

electronic states. This can establish a generalized circular

“water-wheel” motion, either in real space [10] or in mode

space. Another requirement is that these modes have little

damping due to the coupling to the phonon reservoir. Unfortu-

nately, there has not been a clear experimental setup where

these new theoretical findings can be put to a test proving their

effect in an unambiguous way. Thus, it is of interest to be able

to propose such a setup based on first principles calculations

with realistic unadjustable parameters.

In this paper, we study the current-induced dynamics in a

partially dehydrogenated armchair graphene ribbon. We show

that, atomic motion of the dehydrogenated carbon dimer at the

nanoribbon boundaries are relatively decoupled from other

dimers and also from the rest carbon atoms. This results in

several nearly degenerate atomic vibrations, where each of these

involves mainly one dimer. However, a coupling of the dimer

vibrations takes place via the flowing electrical current. All

these features are favorable to observe the effect of current-

induced forces, thus making armchair nanoribbon an ideal

candidate to study.

In the rest of the paper, we summarize our theoretical (section

“Theory”) and numerical (section “Numerical Calculation”)

methods, and present our analysis of the armchair graphene

ribbon (section “Results and Discussion”). We end this paper

with our concluding remarks (section “Conclusion”).

Theory
We consider a standard Landauer-type transport setup described

in Figure 1a. The system/device is in contact with the left and

right leads. Each lead serves as both electronic and phononic

bath. The bath degrees of freedom are non-interacting. We are

interested in the atomic dynamics in the device region

(displacements U), which can be described by the semi-clas-

sical generalized Langevin equation (SGLE) [12,18-20],

(1)

Here F(U) is the force between atoms in the device region and

f(t) is a random force due to thermal and voltage-bias-induced

fluctuations. The Πr (self-energy) describes the time-delayed

back action of the bath on the system due to the motion of the

system. It has three contributions,

(2)

where  and  describe the coupling to the phonon reser-

voirs outside device, while the self-energy  describes the

coupling to the electrons. In equilibrium, this result has been

obtained by, i.e., Head-Gordon and Tully [21]. In principle we

may apply the SGLE including the non-linear part of F [22], but

here we will restrict ourselves to the harmonic approximation,

F(U) = −KU.

Non-equilibrium
The semi-classical Langevin equation can be extended to

include the non-equilibrium effects in the electronic system due

to the current [11,12,23]. In accordance with intuition the
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Figure 1: (a) Structure of the transport setup defining device and
symmetric electrode(left shown) regions. The motion of atoms is
considered in the dynamical region. (b) Electron transmission in a
perfect, infinite ribbon (dotted), and with broadened states in the elec-
trodes to mimic metallic contacts with/without dehydrogenation
(dashed/full). (Red and green vertical dashed lines indicate the shifts in
Fermi energy used below in Figure 2). (c) Solid line is phonon trans-
mission for the structure in (a), dotted line is phonon transmission for a
pristine hydrogenated ribbon.

“traditional” Joule-heating is present in the fluctuating force, f,

while the current-induced forces show up in . Here we focus

on the latter. The contribution from the electron degrees of free-

dom including the non-equilibrium effects can be expressed in

terms of the coupling-weighted electron–hole pair density of

states, Λ,

(3)

with Λ (including spin), given by,

(4)

(5)

Here, Aα/β is the density of scattering states incoming from left

and right electrodes (indices α and β), while M describes the

electron–phonon couplings (k and l phonon indices). One can

loosely think of the motion of phonon k excites an electron–hole

pair of energy  which is absorbed by phonon l.

The SGLE, in Equation 1, is given in the time domain.

However, since we are considering steady state, it is convenient

to work in the frequency domain. Thus, by Fourier transforma-

tion we obtain,

(6)

By applying the Sokhatsky–Weierstrass theorem Πr(ω) can be

split into four contributions giving rise to the four forces

(7)
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(10)

Here, FR, NC, RN, BP represent the electronic friction, noncon-

servative force, renormalization of the atomic potential, and

Berry-phase-induced pseudo-magnetic force, respectively [12].

Run-away modes
In order to analyze the influence of the current we define the

nonequilibrium phonon density of states (DOS) as,

(8)

where Dr(ω) is the nonequilibrium phonon Greens function

obtained from the SCLE,

(9)

Note that we introduced boldface to underline that these are

matrices with mode-index (k,l). Contrary to the equilibrium

situation, the DOS given in Equation 8 can take negative values

at certain peak values, due to the electronic current. We can

interpret a negative peak in the DOS at a frequency ω0 as modes

at ω0 with a negative lifetime, i.e., with growing in amplitude as

a function of time and denote these by ”run-away” modes.

Mode analysis
In order to identify the modes that can show run-away behavior,

we need to find the solutions to Equation 1 by setting the

driving noise force, f(ω), to zero. This is done by treating the

velocity and displacement as independent variables and use the

relation  to obtain the double-sized eigen-

value problem. However, the self-energy Πr is frequency-

dependent. Thus, to analyze a specific runaway mode giving

rise to a negative peak in Figure 2a (see below), we evaluate the

self-energy at the negative peak frequency ω0 as given below in

Equation 10,

Thus ,  t he  dynamica l  ma t r ix  i s  r enorma l i zed  by

 and the friction originates from

. Solving Equation 10 gives a set of

eigenmodes and complex eigenfrequencies, but only the “self-

consistent” mode, which fulfills Re(ω) = ω0, is relevant.

For a given eigenmode a corresponding positive imaginary part

of the eigenfrequency designates that the mode is a run-away

mode, while if the imaginary part is negative the mode is

damped. The damping can be quantified by the inverse Q-factor

giving the change in energy per period

(11)

Thus, the run-away modes can be identified as the modes where

Im(ω) > 0. The run-away modes are a linear combination of the

non-perturbed normal modes. Normally, the runaway makes

closed loops in real or in abstract mode space. Thus, the NC

force allows the mode to pick up energy every time a loop is

completed, eventually leading to break down of the harmonic

approximation, ending with, e.g., rupture or damping by anhar-

monic effects leading to a limit cycle motion [24].

Numerical Calculation
We have calculated the electronic and phononic structure of the

graphene nanoribbon from density function theory (DFT) using

the SIESTA/TranSIESTA codes [25,26]. The generalized

gradient approximation is used for the exchange–correlation

functional, and a single-ζ polarized basis set is used for the

carbon and hydrogen atoms. A cut-off energy of 400 Ry is used

for the real-space grid. The electron-vibrational coupling is

calculated using the INELASTICA package, which uses a finite

difference scheme [27].

Results and Discussion
The partially dehydrogenated graphene nanoribbon we consid-

ered is shown in Figure 1a, where four hydrogen atoms have

been removed on each side of the ribbon. In principle, dehydro-

genation could be performed at chosen positions with an STM

[28]. The same structure has been considered in our recent

work, focusing on the asymmetry in phonon emission and heat
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distribution due to the nonequilibrium for lower voltage than

where run-away instability occurs [29]. This asymmetry is

intrinsically linked to momentum transfer from electrons to

phonons and thus to the nonconservative current-induced forces

(“electron wind”) [30]. As we mentioned before, the reason we

choose this structure is that the dehydrogenated carbon dimers

can be considered as “defects” in the armchair ribbon. In

general defects give rise to modes localized around the defect.

They originate from the local change in force constants shifting

the mode out of its unperturbed subband [31].

The relative motion of the two carbon atoms in each dimer only

couples weakly to the motion of neighbouring dimers and to the

phonons in the leads. This high-energy mode is shifted out

of the entire phonon bandstructure. Meanwhile, the flowing

electrical current passing through these dimers introduce a

small bias-dependent coupling via the self-energy (Πe) in

Equation 10. In principle, one can tune the relative distance

between different dimers by changing the ribbon width or the

position of the dehydrogenation. It is an ideal and clean system

to study the current-induced atomic dynamics, with some

tunability since one may imagine doping or gating to shift the

Fermi level, EF, as well as changes in geometry such as varying

the distance between dimers.

In this study, the nanoribbon has a width of 7 dimers corre-

sponding to a C–C edge distance of 7.5 Å. The lateral confine-

ment introduces a direct semi-conducting band gap, giving rise

to the gap in the electronic transmission for the perfect ribbon

as shown in Figure 1b. We have introduced a broadening of the

electronic states as in Christensen et al. [6] to mimic coupling to

metallic electrodes. This in effect smoothens the transmission

curves Figure 1b (dotted lines) akin to the experimental conduc-

tance [5]. The introduction of the defects results mainly in a

potential shift, but besides this does not impact the transmis-

sion dramatically, as seen in Figure 1b (solid lines).

In order to characterize the phonons we show the phononic

transmission in Figure 1c. The phonon transmission shows a

significant reduction of approx. 50% for  above 25 meV.

The fact that we see little difference between a perfect and a

defect system at low phonon energy is expected when the wave-

length is much larger than the defect. We note that, ideally, the

translation (T) in the three spatial directions and rotation around

the longitudinal direction of the GNR should lead to perfect

T = 4 at , equal exactly to zero for both pristine and defected

structure. The deviation is due to our numerical neglect of long-

range elastic forces. However, while the low energy/long wave-

length modes are important for heat transport, we are here

concerned with modes with a higher frequency above 25 meV,

where the calculation is expected to be accurate.

Figure 2: (a) The black solid line shows the phonon density of states
excluding the self-energy due to the electronic degrees of freedom.
The green dotted and the red dashed lines show the phonon DOS
including the current-induced forces for an applied bias of 0.5 V,
shifting the Fermi energy to EF = −1.4 eV and EF = 1.4 eV, respective-
ly, corresponding to the vertical lines in Figure 1b; (b) the run-away
mode giving rise to the dip in (a) indicted by arrow 1 (Q ≈ 10−3); (c,d)
the most important normal modes taking part in (b); (e) the run-away
mode giving rise to the dip in (a) indicted by arrow 2 (Q ≈ 0.5·10−3);
(f–h) the normal modes taking part in (b).

The influence of the current-induced forces on the phonon self-

energy depend on the underlying electronic properties. Thus,

besides the unperturbed phonon DOS exclusive the current-

induced forces (black solid line in Figure 2a), we also calculate

the non-equilibrium DOS using Equation 8 shifting the Fermi

energy away from the gap to EF = −1.4 eV (green dotted line)

and EF = 1.4 eV (red dashed line), and applying a bias of

Vb = 0.5 V. Comparing these results, we see that there are

several run-away modes (negative peaks) for EF = 1.4 eV, but

not for EF = −1.4 eV. In Figure 2b and Figure 2e we show two

typical run-away modes marked as 1 and 2 in Figure 2a. In
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Figure 2c,d and Figure 2f–h, we also plot the “bare” normal

modes (without coupling to electron and phonon baths), which

give the largest contribution to the two selected run-away

modes. These run-away modes have in common that they are

spatially localized, meaning a vanishing damping due to the

coupling to the phonon reservoirs, which is a prerequisite for

the run-away instability here. The driving of the motion by the

current has to exceed this damping. Both run-away modes

involve mainly the dehydrogenated carbon dimers, but while

mode 2 lies outside the bulk phonon bands and is thus localized,

the frequency of mode 1 is well within the entire phonon band,

illustrating that this is not a necessary requirement. In the case

of 1 the localization is due to a shift out of a ribbon phonon sub-

band. Most of the “bare” normal modes (Figure 2c,d and

Figure 2f–h contributing to run-away motion can be considered

as a in or out of phase combination of different dimer vibra-

tions.

The two selected modes illustrate how the run-away modes can

display circular motion in real-space or in abstract mode space.

For the modes showing circular motion it is intuitively clear

why these have been dubbed “water-wheel” modes [10], and

that the direction of rotation is linked to the direction of current

via (angular) momentum transfer [30]. Mode 1 is made up by

two principal bare modes, while mode 2 does so in abstract

mode space, and consists of mainly three bare modes. In both

cases the nonconservative force pump energy into these modes

when they oscillate around closed loops. We note that anhar-

monic coupling will lead to additional damping, which is not

included in the harmonic approximation applied here, but we

expect a lower anharmonic coupling to the mode well outside

the bulk band (mode 2) due to the frequency mismatch. The

structure we consider has mirror symmetry in the lateral direc-

tion perpendicular to the transport. The resulting motion of the

run-away mode respects this symmetry. But, the motion along

the current direction is asymmetric since the current breaks the

symmetry. This is more obvious for mode 1 (Figure 2c). Mode

2 is strictly localized in the center, but mode 1 has weak

coupling to the leads. Consequently, mode 1 shows larger

asymmetry. We should mention that this asymmetry in the local

heating already shows up before the run-away modes emerge

[29].

Conclusion
In conclusion, we have studied the effect of current-induced

forces on the dynamics of dehydrogenated carbon dimers at the

edges of graphene armchair ribbon. These carbon dimers are

weakly coupled to each other and the rest of the carbon atoms,

but they interact with the electrical current. This induces effec-

tive coupling between them, and the nonconservative and effec-

tive magnetic force become important in describing their

dynamics. Using a simplified eigenmode analysis, we analyze

how the carbon dimer motion is modified by these forces at

different Fermi level positions. The possibility of observing the

atomic structure of the two-dimensional structures in micros-

copy, gating or doping, and atomic scale modification of

graphene ribbon boundaries makes it an ideal candidate to study

current-induced forces in nanoconductors, where interesting

theoretical predictions are awaiting for experimental confirma-

tion.

So far current-induced motion and desorption have been

observed around edges in graphene sheets [7,8]. One signature

of the nonconservative forces is, besides the asymmetry build

into the momentum transfer, the highly non-linear heating of

modes with bias [11], which in principle could be observed

around edges [32].
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